TURNING A WEB OF SCIENCE ENTRY INTO A CELL CITATION

Rollins’ Biology Department uses the Cell format for citations. Here is an example of how to take the information about an article from Web of Science and turn it into a proper reference and in-text citation:

1. Take the example results list below. We’ll look at the article boxed in red. Click on the title of the article to get to the more detailed entry, shown in the next step.
2. Every article has a page like this. The information in colorful boxes is what you will need for your in-text citations and reference list entry (don’t worry about the highlighted words):

3. Here is the basic format for a *Cell* citation. The colors in this example and the colorful boxes in the screenshot above correspond to each other:

 Author1, A.A., Author2, B.B., and Author3, C.C. (Year). Title of article. Title of Journal Volume, page range.

4. So now we can take the information from Web of Science and plug it into the *Cell* format:

IMPORTANT THINGS TO NOTE:
- As many as 10 authors may be listed in the manner shown above. After 10 authors, you may use “et al.” Always use authors’ initials, not their full first and middle names, even if they are credited by their full names in the article.
- In the article title, only capitalize the first word and proper nouns. There may be some Web of Science entries that capitalize every word in the title. De-capitalized them for your reference list entry.
- Equally important as what is in the citation is what is not in the citation. *Cell* does not require that you include the issue number, the DOI, or the month of publication, even if they are provided! You also do not need to include a URL or indicate that you found the article on Web of Science.
5. In-text citations need to include the **author** and the **year**. In the case of in-text citations, you are permitted to use “et al.” if there are more than 2 authors. For the article above, an in-text citation might look like this:

 Here is a sentence that refers to information taken from the above article (Hoch et al. 2008). Notice there is no comma between the author and the year or before the phrase *et al!* You also do not need to include page numbers in the citation.

 Here are two additional Web of Science entries to practice with:

 - **Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA**

 By: Greening, H (Greening, H.)¹1; Janicki, A (Janicki, A.)²1; Shenwood, ET (Shenwood, E. T.)¹1; Pribble, R (Pribble, R.)²1; Johansson, JOR (Johansson, J. O. R.)²1

 ESTUARINE COASTAL AND SHELF SCIENCE

 Volume: 151 Pages: A1-A16

 DOI: 10.1016/j.ecss.2014.10.003

 Published: DEC 5 2014

 Abstract

 In subtropical Tampa Bay, *Florida*, USA, we evaluated restoration trajectories before and after nutrient management strategies were implemented using long-term trends in nutrient loading, water quality, primary production, and seagrass extent. Following citizen demands for action, reduction in wastewater nutrient loading of approximately 90% in the late 1970s lowered external total nitrogen (TN) loading by more than 50% within three years. Continuing nutrient management actions from public and private sectors were associated with a steadily declining TN load rate and with concomitant reduction in chlorophyll-a concentrations and ambient nutrient concentrations since the mid-1980s, despite an increase of more than 1 M people living within the Tampa Bay.

 In-text citation:

 Reference list entry:

 OVER ↓
The Optical Properties of Greater Florida Bay: Implications for Seagrass Abundance

By: McPherson, ML (McPherson, Meredith L.)¹¹; Hill, VJ (Hill, Victoria J.)¹¹; Zimmerman, RC (Zimmerman, Richard C.)¹¹; Dierssen, HM (Dierssen, Heidi M.)²

ESTUARIES AND COASTS
Volume: 34 Issue: 6 Pages: 1150-1160
DOI: 10.107/s12237-011-9411-9
Published: NOV 2011
View Journal Information

Abstract
Water column optical properties of Greater Florida Bay were investigated in the context of their impacts on seagrass distribution. Scattering played an important role in light attenuation throughout the shallow water system. The northwest region was characterized by an absence of seagrasses and the highest scattering by particles, mostly from resuspended carbonate sediments. Higher seagrass densities were observed in the open waters just north of the Florida Keys, where absorption coefficients were dominated by colored dissolved organic material and scattering was lower than in the northwest region. Patchy dense seagrass meadows were observed in the clear waters south of the Keys where scattering and absorption were low and contributed equally to light attenuation. In general, seagrasses were observed in areas where >75% of surface irradiance reached the plants and where optical properties were not dominated by

In-text citation:

Reference list entry: